Based on analysis from NOAA’s Global Monitoring Lab, global average atmospheric carbon dioxide was 414.72 parts per million (“ppm” for short) in 2021, setting a new record high despite the continued economic drag from the COVID-19 pandemic. In fact, the jump of 2.58 ppm over 2021 amounts tied for 5th-highest annual increase in NOAA's 63-year record.

    The modern record of atmospheric carbon dioxide levels began with observations recorded at Mauna Loa Observatory in Hawaii. This graph shows the station's monthly average carbon dioxide measurements since 1960 in parts per million (ppm). The seasonal cycle of highs and lows (small peaks and valleys) is driven by summertime growth and winter decay of Northern Hemisphere vegetation. The long-term trend of rising carbon dioxide levels is driven by human activities. NOAA image, based on data from NOAA Global Monitoring Lab. 

    Carbon dioxide concentrations are rising mostly because of the fossil fuels that people are burning for energy. Fossil fuels like coal and oil contain carbon that plants pulled out of the atmosphere through photosynthesis over many millions of years; we are returning that carbon to the atmosphere in just a few hundred. Since the middle of the 20th century, annual emissions from burning fossil fuels have increased every decade, from an average of 3 billion tons of carbon (11 billion tons of carbon dioxide) a year in the 1960s to 9.5 billion tons of carbon (35 tons of carbon dioxide) per year in the 2010s, according to the Global Carbon Update 2021 .

    Carbon cycle experts estimate that natural “sinks”—processes that remove carbon from the atmosphere—on land and in the ocean absorbed the equivalent of about half of the carbon dioxide we emitted each year in the 2011-2020 decade. Because we put more carbon dioxide into the atmosphere than natural processes can remove, the amount of carbon dioxide in the atmosphere increases every year.

    The more we overshoot what natural processes can remove in a given year, the faster the atmospheric concentration of carbon dioxide rises. In the 1960s, the global growth rate of atmospheric carbon dioxide was roughly 0.8± 0.1 ppm per year. Over the next half century, the annual growth rate tripled, reaching 2.4 ppm per year during the 2010s. The annual rate of increase in atmospheric carbon dioxide over the past 60 years is about 100 times faster than previous natural increases, such as those that occurred at the end of the last ice age 11,000-17,000 years ago. 

    The amount of carbon dioxide in the atmosphere (blue line) has increased along with human emissions (gray line) since the start of the Industrial Revolution in 1750. Emissions rose slowly to about 5 billion tons per year in the mid-20 th century before skyrocketing to more than 35 billion tons per year by the end of the century. NOAA graph, adapted from original by Dr. Howard Diamond (NOAA ARL). Atmospheric CO 2 data from NOAA and ETHZ . CO 2 emissions data from Our World in Data and the Global Carbon Project . 

    Why carbon dioxide matters

    Carbon dioxide is Earth’s most important greenhouse gas : a gas that absorbs and radiates heat. Unlike oxygen or nitrogen (which make up most of our atmosphere), greenhouse gases absorb heat radiating from the Earth’s surface and re-release it in all directions—including back toward Earth’s surface. Without carbon dioxide, Earth’s natural greenhouse effect would be too weak to keep the average global surface temperature above freezing. By adding more carbon dioxide to the atmosphere, people are supercharging the natural greenhouse effect, causing global temperature to rise. According to observations by the NOAA Global Monitoring Lab, in 2021 carbon dioxide alone was responsible for about two-thirds of the total heating influence of all human-produced greenhouse gases.

    Another reason carbon dioxide is important in the Earth system is that it dissolves into the ocean like the fizz in a can of soda. It reacts with water molecules, producing carbonic acid and lowering the ocean's pH (raising its acidity). Since the start of the Industrial Revolution, the pH of the ocean's surface waters has dropped from 8.21 to 8.10. This drop in pH is called ocean acidification .

    (left) A healthy ocean snail has a transparent shell with smoothly contoured ridges. (right) A shell exposed to more acidic, corrosive waters is cloudy, ragged, and pockmarked with ‘kinks’ and weak spots. Photos courtesy Nina Bednarsek, NOAA PMEL. 

    Past and future carbon dioxide

    Natural increases in carbon dioxide concentrations have periodically warmed Earth’s temperature during ice age cycles over the past million years or more. The warm episodes (interglacials) began with a small increase in incoming sunlight in the Northern Hemisphere due to variations in Earth’s orbit around the Sun and its axis of rotation. (For more details, see the “Milankovitch cycles and ice ages” section of our Climate change: incoming sunlight article.) That little bit of extra sunlight caused a little bit of warming. As the oceans warmed, they outgassed carbon dioxide—like a can of soda going flat in the heat of a summer day. The extra carbon dioxide in the atmosphere greatly amplified the initial, solar-driven warming.

    Based on air bubbles trapped in mile-thick ice cores and other paleoclimate evidence, we know that during the ice age cycles of the past million years or so, atmospheric carbon dioxide never exceeded 300 ppm. Before the Industrial Revolution started in the mid-1700s, atmospheric carbon dioxide was 280 ppm or less.

    Global atmospheric carbon dioxide (CO2) in parts per million (ppm) for the past 800,000 years. The peaks and valleys track ice ages (low CO2) and warmer interglacials (higher CO2). During these cycles, CO2 was never higher than 300 ppm. The increase over the last 60 years is 100 times faster than previous natural increases. In fact, on the geologic time scale, the increase from the end of the last ice age to the present looks virtually instantaneous.Graph by NOAA based on data from Lüthi, et al., 2008, via NOAA NCEI Paleoclimatology Program.

    By the time continuous observations began at Mauna Loa Volcanic Observatory in 1958, global atmospheric carbon dioxide was already 315 ppm. Carbon dioxide levels today are higher than at any point in human history. In fact, the last time atmospheric carbon dioxide amounts were this high was more than 3 million years ago, during the Mid-Pliocene Warm Period, when global surface temperature was 4.5–7.2 degrees Fahrenheit (2.5–4 degrees Celsius) warmer than during the pre-industrial era. Sea level was at least 16 feet higher than it was in 1900 and possibly as much as 82 feet higher.

    If global energy demand continues to grow rapidly and we meet it mostly with fossil fuels, human emissions of carbon dioxide could reach 75 billion tons per year or more by the end of the century. Atmospheric carbon dioxide could be 800 ppm or higher—conditions not seen on Earth for close to 50 million years.

    Plausible future socioeconomic pathways for annual carbon dioxide emissions (left) and the resulting atmospheric carbon dioxide concentrations (right) through the end of the century. A shared socioeconomic pathway is an internally consistent set of assumptions about future population growth, global and regional economic activity, and technological advances. Models use these pathways to project a range of possible future carbon dioxide emissions; for simplicity, the image only shows the only the mean value. NOAA graphic adapted from figure TS.4 in the IPCC Sixth Assessment Report Technical Summary .

    More on carbon dioxide

    NOAA carbon dioxide observations

    Carbon cycle factsheet

    Carbon dioxide emissions by country over time

    Comparing greenhouse gases by their global warming potential

    Ocean acidification


    Collins, M., R. Knutti, J. Arblaster, J.-L. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao, W.J. Gutowski, T. Johns, G. Krinner, M. Shongwe, C. Tebaldi, A.J. Weaver and M. Wehner, 2013: Long-term Climate Change: Projections, Commitments and Irreversibility . In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

    X. Lan, B. D. Hall, G. Dutton, J. Mühle, and J. W. Elkins. (2020). Atmospheric composition [in State of the Climate in 2018, Chapter 2: Global Climate ]. Special Online Supplement to the Bulletin of the American Meteorological Society, Vol.101, No. 8, August, 2020. 

    Lüthi, D., M. Le Floch, B. Bereiter, T. Blunier, J.-M. Barnola, U. Siegenthaler, D. Raynaud, J. Jouzel, H. Fischer, K. Kawamura, and T.F. Stocker. (2008). High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature, Vol. 453, pp. 379-382. doi:10.1038/nature06949.

    Woods Hole Oceanographic Institution. (2015). Introduction to ocean acidification. Accessed October 4, 2017.

    Lindsey, R. (2009). Climate and Earth’s energy budget. Accessed October 4, 2017. 

    What is the most likely source of the increase in carbon dioxide in the atmosphere shown in the graph?
    Carbon dioxide concentrations are rising mostly because of the fossil fuels that people are burning for energy. more
    Is an empty graph and null graph the same?
    A null graph is a graph in which there are no edges between its vertices. A null graph is also called empty graph. more
    What is a simple graph in graph theory?
    A simple graph is a graph that does not have more than one edge between any two vertices and no edge starts and ends at the same vertex. In other words a simple graph is a graph without loops and multiple edges. more
    What is graph types of graph?
    Popular graph types include line graphs, bar graphs, pie charts, scatter plots and histograms. Graphs are a great way to visualize data and display statistics. For example, a bar graph or chart is used to display numerical data that is independent of one another. more
    What is simple graph and multiple graph?
    A graph is defined to be a simple graph if there is at most one edge connecting any pair of vertices and an edge does not loop to connect a vertex to itself. When multiple edges are allowed between any pair of vertices, the graph is called a multigraph. more
    Is null graph a complete graph?
    Each vertex is connected with all the remaining vertices through exactly one edge. Therefore, they are complete graphs. more
    What graph is considered a good graph?
    Line graphs are used to track changes over short and long periods of time. When smaller changes exist, line graphs are better to use than bar graphs. Line graphs can also be used to compare changes over the same period of time for more than one group. more
    Is the null graph a graph?
    A null graph is a graph in which there are no edges between its vertices. A null graph is also called empty graph. more
    Is null graph an empty graph?
    In the mathematical field of graph theory, the term "null graph" may refer either to the order-zero graph, or alternatively, to any edgeless graph (the latter is sometimes called an "empty graph"). more
    Is a null graph a simple graph?
    It is typical to refer to a graph with no vertices as the null graph. Since it has no loops and no parallel edges (indeed, it has no edges at all), it is simple. more
    Is null graph a simple graph?
    It is typical to refer to a graph with no vertices as the null graph. Since it has no loops and no parallel edges (indeed, it has no edges at all), it is simple. more


    You may be interested in...

    What the heck is mochi?

    What is pudding iron?

    Is orange juice full of sugar?

    Can a Great Pyrenees sleep outside?

    What are public keys and private keys?

    Are asparagus man-made?

    Do kelpies chase balls?

    Why dogs smell your private parts?

    What are the four types of responsibility centers?

    What are 2 health apps?

    Should I declare hobby income?

    What is the highest earning stock?

    Do blue fireworks exist?

    Why are my tires leaving black marks?

    How much does an Ashera cat cost?

    About Privacy Contact
    ©2022 REPOKIT